Bozcaada, Turkey

Bozcaada, Turkey

  • Target: 100% renewable electricity
  • Status: Achieved
  • RES: 17 turbine wind farm, solar arrays, hydrogen energy.
  • Implementation: Bozcaada is an island of Turkey in the northeastern part of the Aegean Sea. It currently generates more power than it consumes. In 2000, a 17 turbine wind farm was constructed with a nominal power capacity of 10.2 MW energy, and produces 30 GWh of electricity every year. This is the equivalent consumption of 17,500 households or 30 times the consumption of the whole island of Bozcaada. The excess electricity produced is fed to mainland Anatolia through an underground and partly undersea cable. The hospital and governor’s mansion on the island uses hydrogen energy produced by local renewable energy sources. At the governor’s mansion, energy is captured with a rooftop 20 kW solar array and a 30 kW wind turbine. The electricity produced is used to electrolyze water into hydrogen. This gas is stored compressed and used later to generate energy or as fuel in hydrogen-powered cars.
  • Population: 2,465 (2012)
  • Area: 42.63 km2 (16.46 sq mi)
  • Link: http://www.globalislands.net/greenislands/index.php?region=6&c=58
Bozcaada, Turkey

Bruchmühlbach-Miesau, Germany

Bruchmühlbach, Germany

  • Target: 100% renewable energy
  • Status: Achieved
  • RES: Wind farms, biogas cogeneration plants, a solar PV plant, and rooftop solar systems.
  • Implementation: The municipality of Bruchmühlbach-Miesau consists of several small towns and villages, located in the state of Rhineland-Palatinate in the west of Germany. The town of Miesau in particular is well-known for the “Miesau Army Depot” (the largest American ammunition depot outside the US). The town is also just a few miles from the famous Rammstein Airbase and Landstuhl Medical Centre. Today, Bruchsmühlbach-Miesau is also known for its 100% renewable energy supply systems. In order to achieve this 100% goal, the mayor initially approached the US Army authorities with the plan of placing a 1-MW solar PV plant on the roof of storage buildings within the military base. The project was finally approved in 2012 by the local American military authorities and the national German authorities, and following this success, the municipality began planning for a biogas cogeneration plant to be built, also with the US base's cooperation.

    The plants proposed were to help boost the municipality's existing energy infrastructure. By then, it already operated a wind farm consisting of 10 turbines that generated about 37 GWh/a, a biogas plant that generated 2.7 GWh/a, and over 200 rooftop solar systems generating 2 GWh/a.  When a 5 turbine wind farm was completed in 2013, it produced an additional 47 GWh/a. At this point the community of Bruchsmühlbach-Miesau was able to produce 290% of its electricity demand. The wind farms especially enjoyed good support in the area due to strong local participation and the emphasis on regional value creation.

  • Population: 10,500
  • Area: 26.86 km2 (10.37 sq mi)
  • Link: https://cleantechnica.com/2012/04/23/us-military-cooperates-in-german-small-town-energy-revolution/
Bruchmühlbach, Germany

Brunico (Bruneck), Italy

Brunico (Bruneck), Italy

  • Target: 100% renewable energy
  • Status: Achieved
  • RES: Solar thermal systems, solar photovoltaics, small hydro plants, biomass plant, biogas plant, and district heating network.
  • Implementation: Brunico, Italy is a town in South Tyrol. Today, the town is producing more electricity and heat than it consumes. It has an array of renewable energy systems installed. For heating, it has 840 m² of rooftop solar thermal systems supplying water heating, a 120 km district heating network fed by a 9 MW biomass plant and a 1.5 MW biogas plant near a landfill site supplies heat for more than 2000 buildings. Electricity for around 1500 families comes from 3 MW of rooftop photovoltaic panels, small hydro plants totalling 4.4 MW, and a 20 MW biogas plant that is fed by wood waste. The town additionally has a large 46.3 MW hydro project from its prior electricity system that is not counted toward the renewable energy total. The elementary school and fire station are entirely energy independent with their solar PV installations of 32 kW and 64 kW respectively. Brunico’s School Centre is additionally able to meet part of its heating requirements with 750 m² of vacuum tube collectors that heat up 3000 m³ of undeground tanks. The hot water is pumped through radiators and radiant floor heating panels.

    To support Brunico’s renewable energy commitment, town policy requires  that all local buildings meet up to 25% of their own energy needs with renewable sources, including 50% of their hot water demand. Italy's feed-in tariff law, like the German feed-in tariff provides a great incentive to the town. The law guarantees connection to the grid for renewable energy producers of all sizes and reasonably priced payment differentiated by technology for all the renewable electricity they generate.
  • Population: 15,491 (2010)
  • Area: 45 km2 (17 sq mi)
  • Link: https://www.stadtwerke.it
Brunico (Bruneck), Italy

Burgenland, Austria

Burgenland, Austria

  • Target: 100% of its electricity from local, renewable sources by 2020
  • Status: Achieved - Burgenland managed to supply 100% of its electricity needs through wind power by 2013.
  • RES: Wind power and biomass energy.
  • Implementation: Burgenland is the seventh largest of Austria's nine states. It borders the Austrian states of Styria and Lower Austria, as well as Hungary, Slovakia and Slovenia. Today, this region in eastern Austria gets 100% of its electricity from local, renewable sources . It all began in 1992, when a local citizen wanted to install a wind turbine on his property and contacts a wind power consultancy. The consultancy recommended to build a large farm in view of the site’s high wind power potential. In the following year, the owner and the consultancy presented the project to the Zurndorf town council. Between 1993 and 1995,  planning and wind measurements were undertaken. In 1994, the municipality decided to create a company for managing the project (where the municipality has a 98% stake). By 1995, the membership of Austria to the European Union, meant that the Burgenland could benefit from EU Structural Funds to carry out infrastructure projects, such as energy. By 1997, the Austrian government decided to increase the share of renewable energy to 3% of final energy use, beginning with the construction of the Zurndorf wind farm. In 2001 the Austrian electricity market was open, and in 2002 Burgenland developed a regional wind power plan. In 2003 the Green Power Act was adopted. By 2009, the Burgenland Energieteam was established to set an energy self-sufficiency target by 2050, accompanied by an action plan. By 2013 self-sufficiency in electricity was already achieved. It is estimated that 4,500 jobs have been created through the development of wind power in Burgenland.
  • Population: 284,900
  • Area: 3,961.80 km(1,529.66 sq mi)
  • Link: https://ec.europa.eu/regional_policy/archive/newsroom/pdf/200912_burgenland.pdf
Burgenland, Austria

Burlington, Vermont, USA

Burlington, Vermont, USA

  • Target: Meet 90% of energy needs including electricity, heating and transport with renewable energy sources by 2050 (State of Vermont target).
  • Status: Achieved - By September 2014, 100% of the city's electricity demand was supplied by renewable energy sources. First city in the United States to source 100% of electricity from renewable energy.
  • RES: Biomass, wind power, small hydroelectric plants, solar, landfill methane and large hydro.
  • Implementation: In 2014, the city purchased the Winooski One Hydroelectric Facility, a 7.4 megawatt hydro plant. Burlington Electric Department (BED) purchases renewable electricity credits to satisfy 100% yearly target. Joseph C. McNeil Generating Station fed with biomass covers up to 60% of the energy consumption. Wind farms covers around 17% of the electricity consumption.
  • Population: 42,239
  • Area: 40.1 km²
  • Link: https://www.politico.com/magazine/story/2016/11/burlington-what-works-green-energy-214463
Burlington, Vermont, USA

Byron Shire, Australia

Byron Bay, NSW, Australia

  • Target: Zero-emissions renewable energy community wide by 2025
  • Status: In progress
  • RES: Rooftop solar phototovolatics
  • Implementation: Byron Shire is a community of around 31,500 people located in the Northern Rivers region of New South Wales (NSW), Australia. Since 2014, the Shire has been making efforts to cut emissions  through the launch of a community-owned clean energy generator focusing on solar photovoltaic (COREM - Citizens Own Renewable Energy Mullumbimby), a strong uptake of rooftop solar and the cooperation of energy retailer ENOVA, through which Byron buys and distributes renewable energy from a range of sources. In 2015, the Shire set the goal of transitioning away from non-renewable energy sources and to reduce greenhouse gas emissions to zero within 10 years. It aimed to be the first in Australia to achieve this goal. This commitment, prompted by a visit by the think tank Beyond Zero Energy, also built on Byron Shire's Low Carbon Strategy that laid out how municipal operations could reduce greenhouse gas and protect the community from the impacts of peak oil. The Energy Strategy would focus on the several aspects namely: renewable energy; building retrofits; electric vehicles, cycle ways and public transport; land use management and vegetation; and waste and waste water management.
  • Population: 31,556 (2016)
  • Area: 566.7 km2 (218.8 sq mi)
  • Link: https://zerobyron.org/energy/
Byron Bay, NSW, Australia

Canberra, ACT, Australia

Canberra, ACT, Australia

  • Target: 100% renewable electricity supply by 2020.
  • Status: In progress - 47MW renewable energy capacity (2013) in Australian Capital Territory (ACT).
  • RES: Wind and solar farms.
  • Implementation: Canberra covers the 100% through auctioning, meaning the purchase of electricity from several wind and solar farms. Until 2017, the government commissioned three solar and three windfarms to respectively provide 44MW and 200MW, accounting for 60% renewables. Additional 200MW wind and 50MW solar capacity are to cover the interim target of 90% by 2020. Increased annual electricity bills by 2020 are to be partly compensated by annual average savings  through the free replacement of downlights. Investments will be made in renewable research programmes and training, as well as the building of headquarters and maintenance facilities . So far, AUD $400 million local investments have been achieved in the auctioning process.
  • Population: 410,301
  • Area: 814.2 km²
  • Link: https://www.environment.act.gov.au/energy/cleaner-energy/renewable-energy-target-legislation-reporting

 

Canberra, ACT, Australia

Cape Verde

Cape Verde

  • Target: 100% renewable energy by 2020, become a model for zero emissions on a global scale and a knowledge hub for several sub-regions.
  • Status: In progress
  • RES: Windpower
  • Implementation: Cape Verde is an island country spanning an archipelago of 10 volcanic islands in the central Atlantic Ocean. It is located 570 kilometres off the coast of Western Africa. In 2006, its Government adopted a law which sets out licensing procedures for independent power producers and auto-producers. In 2011, it determined a more detailed renewable energy policy framework to include a roadmap on how to reach the 100% RE target. The decision was based on scientific based discussions on the benefits of the goal. The high dependence on imported fossil fuels to meet its energy demand meant that a shift to 100% renewable energy was needed – especially as energy demand is predicted to rise. The Cape Verde government thus decided to invest renewable energy generation in order to not only provide electricity to inhabitants directly, but to also produce desalinated water, extend the energy grid, and provide energy storage options. To gain public support for the energy transition, the government held public consultations which were held in each of the four islands where wind projects would be built. Meanwhile, comprehensive Environmental and Social Impact Assessments were conducted. Local landowners were engaged in the siting of the projects and a consideration about securing grazing rights underneath the wind turbines was included in the course of involving the island's livestock herders.
  • Population: 539,560 (2016)
  • Area: 4,033 km2 (1,557 sq mi)
  • Link: https://sustainabledevelopment.un.org/partnership/?p=2271
Cape Verde

Carinthia, Austria

Heiligenblut am Großglockner, Kärnten, Carinthia, Austria

  • Target: 100% renewable electricity achieved. 100% renewable heating by 2025. 100% renewable transport by 2035.
  • Status: Achieved
  • RES: Hydropower and biomass for heating.
  • Implementation: Carinthia (Kärnten) is a region in the mountains of southern Austria and is one of the leading renewable energy regions in Europe. Carinthia uses 100% renewable electricity from local water power, and all the utilities in the region sell only 100% renewable electricity. The region also uses 70% renewable energy (biomass) for heating, with a goal reaching 100% by 2025. Currently 12% of transportation demand is covered by renewables with an aim to get to 100% by 2035. By 2013, 55% of Carinthia's total energy supply was coming from renewable sources. Despite an increase in building space of 40% from 1990 to 2011, Carinthian households were able to achieve a 45% reduction in CO2 emissions during this period thanks to the region's energy choices. Renewable energy, along with other advanced technologies, contribute to the local industry base, with pump storage companies, a solar thermal factory and a cluster of biomass businesses all making the region their home.
  • Population: 557,371 (2015)
  • Area: 9,535.97 km(3,681.86 sq mi)
  • Link: https://www.ktn.gv.at/Service/Publikationen?kid=5
Heiligenblut am Großglockner, Kärnten, Carinthia, Austria

Chicago, Illinois, USA

Chicago, Illinois, USA

  • Target: 100% renewable electricity by 2035
  • Status: In progress
  • RES: Solar energy
  • Implementation: Chicago is the largest city in the United States to commit to 100% renewable energy. Located on the shores of Lake Michigan, it is an international hub for finance, commerce, industry, technology, telecommunications, and transportation. Historically, Chicago has made noted contributions to urban planning and zoning standards, including new construction styles,  the development of the City Beautiful Movement, and the steel-framed skyscraper. Today, it continues its high standard of innovation by setting 100% RE as the basis for future urban development (even despite the 11 nuclear reactors already in operation in the state of Illinois). The 100% target is part of the  Resilient Chicago plan launched in 2018, which commits the city to transition "to 100% clean, renewable energy in buildings community-wide by 2035”. The plan is bolstered by the Sierra Club’s “Ready for 100” campaign, an environmental action group advocating 100% renewable energy worldwide.

    The city of Chicago has also set more specific sectoral targets. By 2025, all city government electricity purchases, first established in 2017, must come from 100% renewable sources. By 2040, the entire bus fleet will be electrified. The city is also making a push for community solar by supporting the Illinois Power Agency’s community incentive programs and by incentivizing community solar through voluntary programs, such as the Chicago Renewable Energy Challenge. Since the passage of the Future Energy Jobs Act, Chicago has seen a boom in community solar, with 1.8 GW of projects applying for block grants in just two weeks.
  • Population: 2,695,598 city, 9,533,040 metro (2010)
  • Area: 234.14 sq mi (606 km2) city, 10,874 sq mi (28,160 km2) metro
  • Link: http://www.cityofchicago.org/city/en/progs/env/chicago-renewable-energy-challenge-program.html
Chicago, Illinois, USA