Aspen, Colorado, USA

Aspen, Colorado, USA

  • Target: 100% renewable energy
  • Status: Achieved
  • RES: Hydropower, windpower, and land-fill gas energy.
  • Implementation: The City of Aspen is located in the Rocky Mountains in the state of Colorado. As one of the most famous skiing resorts in the USA, Aspen welcomes many tourists every year. In particular, the city's winter population grows from approximately 7,000 to 50,000 people. This means that Aspen has to deal with a significantly higher energy consumption in winter compared to the rest of the year. In 1885, Aspen was already one of the first American municipalities to use hydroelectric power, and by 2014, hydroplants were covering 86% of the energy demand. The boost in hydropower has been largely due to the Canary Initiative, which was established in 2005, which identified Aspen and other mountain communities as “canaries in the coal mine” with respect to their sensitivity to the effects of climate change. The initiative laid out a Climate Action Plan, which would reduce GHG emissions by converting its energy supply to one based on RE. In cooperation with the National Renewable Energy Laboratory the city developed a strategy how to achieve this. Investments in renewable energy have enabled the utility to progressively replace fossil fuels. Finally, in August of 2015, the City of Aspen municipally owned electric utility achieved 100% renewable energy, by signing of a contract with the Municipal Energy Agency of Nebraska, a wholesale electric energy provider. Since then, the energy mix in the electricity sector is assembled by 46% hydro, 53% wind and 1% landfill gas energy. The new wind contract, which provides 95% of the new renewable energy, allows the city to only buy what it needs to keep it close to 100% renewable energies. The advantage of this arrangement is that it affords crucial supply management flexibility for dealing with inconsistencies in energy production from Aspen’s other resources, such as the fluctuations in hydro power. It also allows the city to avoid being forced to buy energy they do not need.
  • Population: 6,871 (2016)
  • Area: 3.88 sq mi (10.05 km2)
  • Link: https://www.nrel.gov/docs/fy15osti/62490.pdf
Aspen, Colorado, USA

Beaverton, Oregon, USA

Beaverton, Oregon, USA

  • Target: Achieve 100% renewable energy target including all public buildings, streetlights, and the water supply. 80 percent carbon emissions reduction below current levels by 2050, with a near-term emphasis on 40 percent reduction by 2030.
  • Status: Achieved - Since 2014, 100% of electricity fed into the city's grid comes from wind power sources. It is the only city in the state of Oregon that procures all of its power, for civic operations, from Portland General Electric’s (PGE) renewable energy program.
  • RES: Windpower and solar.
  • Implementation: In the first instance, Beaverton created an Energy Map for the base year of 2012, and researched existing and proposed state laws. To achieve the energy target, the electricity that Beaverton uses is not sourced from renewable energies produced in the town, but through investments in renewable electricity, which offset the consumed power in the city. Beaverton teamed up with PGE to purchase renewable energy offsets equivalent to all of the electricity demands for the city. The renewable energy purchased powers the city’s street lights, traffic signals and water pumping. PGE acts as a public consultant and encourages the community to switch to 100% renewable energy via different green products and packages which they can can select according to their needs. Competitions and projects enhance the level of participation of community members, such as the Beaverton Better Buildings Challenge (Beaverton BBC) which aims to improve energy efficiency in local buildings 20% by 2020. The city provides participants of the program free energy consultation, assistance prioritizing efficiency projects and support with utility data tracking tools.
  • Population: 89,803
  • Area: 48.51 km²
  • Link: https://www.climatesolutions.org/article/beaverton-oregon-does-carbon-math%20
Beaverton, Oregon, USA

Boulder, Colorado, USA

Boulder, Colorado, USA

  • Target: 100% renewable electricity community wide by 2030, interim goal of 40% renewable electricity/50 MW local installations by 2020
  • Status: In progress
  • RES: Solar energy
  • Implementation: Boulder is a small city located in the state of Colorado Rocky Mountains. In December 2016, the City Council voted to commit the City to 80% reduction in community greenhouse gas emissions below 2005 levels by 2050, 100% renewable electricity by 2030, and 80% reduction in organization greenhouse gas emissions below 2008 levels by 2030. At the time of the plan's adoption, 99% of Boulder's energy for electricity, heating, and transportation came from burning fossil fuels. Roughly half of the City's GHG emissions were coming from electricity. Approximately 22% of electricity was being generated by renewables, with approximately 30 MW of local renewable power generation installed. More than half of this was local solar installations.

    By 2030, an all renewable electricity system aims to include 100 MW of local renewables, which will increase to 175 MW by 2050. This increase signals the City's strategy in moving towards 80% electrification. Electric vehicles and heat pumps for example will replace equipment formerly supplied by natural gas, and will demand greater electricity supply.

    To transition to all renewable electricity, Boulder's plan relies on a three part strategy. First is to reduce energy consumption. City-funded pilot projects aim to integrate efficiency with on-site generation and natural gas and petroleum replacement strategies. The City plans to expand demand side management services through the implementation of a municipal utility in lieu of the historic investor owned utility. To lower costs of owning on-site solar, the City plans to establish collective purchase agreements that allow groups to own solar projects. This can help reduce the overall demand for the municipal utility to supply electricity and scale up renewable energy procurement or installation. Second is to replace fossil fuels with renewable energy. The City plan to analyse renewable generation and storage opportunities to replace fossil generation, as well as strategies for replacing natural gas and petroleum-based transportation. Third is to re-design critical community infrastructure and operations through mapping and strengthening resiliency and protection against power failure.
  • Population: 108,090 (2016)
  • Area: 25.85 sq mi (66.95 km2)
  • Link: https://bouldercolorado.gov/energy-future
Boulder, Colorado, USA

Burlington, Vermont, USA

Burlington, Vermont, USA

  • Target: Meet 90% of energy needs including electricity, heating and transport with renewable energy sources by 2050 (State of Vermont target).
  • Status: Achieved - By September 2014, 100% of the city's electricity demand was supplied by renewable energy sources. First city in the United States to source 100% of electricity from renewable energy.
  • RES: Biomass, wind power, small hydroelectric plants, solar, landfill methane and large hydro.
  • Implementation: In 2014, the city purchased the Winooski One Hydroelectric Facility, a 7.4 megawatt hydro plant. Burlington Electric Department (BED) purchases renewable electricity credits to satisfy 100% yearly target. Joseph C. McNeil Generating Station fed with biomass covers up to 60% of the energy consumption. Wind farms covers around 17% of the electricity consumption.
  • Population: 42,239
  • Area: 40.1 km²
  • Link: https://www.politico.com/magazine/story/2016/11/burlington-what-works-green-energy-214463
Burlington, Vermont, USA

Chicago, Illinois, USA

Chicago, Illinois, USA

  • Target: 100% renewable electricity by 2035
  • Status: In progress
  • RES: Solar energy
  • Implementation: Chicago is the largest city in the United States to commit to 100% renewable energy. Located on the shores of Lake Michigan, it is an international hub for finance, commerce, industry, technology, telecommunications, and transportation. Historically, Chicago has made noted contributions to urban planning and zoning standards, including new construction styles,  the development of the City Beautiful Movement, and the steel-framed skyscraper. Today, it continues its high standard of innovation by setting 100% RE as the basis for future urban development (even despite the 11 nuclear reactors already in operation in the state of Illinois). The 100% target is part of the  Resilient Chicago plan launched in 2018, which commits the city to transition "to 100% clean, renewable energy in buildings community-wide by 2035”. The plan is bolstered by the Sierra Club’s “Ready for 100” campaign, an environmental action group advocating 100% renewable energy worldwide.

    The city of Chicago has also set more specific sectoral targets. By 2025, all city government electricity purchases, first established in 2017, must come from 100% renewable sources. By 2040, the entire bus fleet will be electrified. The city is also making a push for community solar by supporting the Illinois Power Agency’s community incentive programs and by incentivizing community solar through voluntary programs, such as the Chicago Renewable Energy Challenge. Since the passage of the Future Energy Jobs Act, Chicago has seen a boom in community solar, with 1.8 GW of projects applying for block grants in just two weeks.
  • Population: 2,695,598 city, 9,533,040 metro (2010)
  • Area: 234.14 sq mi (606 km2) city, 10,874 sq mi (28,160 km2) metro
  • Link: http://www.cityofchicago.org/city/en/progs/env/chicago-renewable-energy-challenge-program.html
Chicago, Illinois, USA

Columbia, South Carolina, USA

South Carolina State House, Columbia, South Carolina, USA

  • Target: 100% renewable energy by 2036
  • Status: In progress
  • RES: Solar energy
  • Implementation: As the first municipality in South Carolina to commit to 100% renewable energy, the city of Columbia today powers its municipal buildings with 100% solar energy and all of the traffic lights have been converted to LED. When record downpours in 2015 caused severe flooding in Columbia, destroying roads and dams, causing billions of dollars in damage, and costing 19 people their lives, its Mayor Steve Benjamin pushed to address the growing threat of climate disruption by supporting clean energy legislation at state and local levels. In June 2017, Columbia adopted its clean energy resolution. To meet this goal, the city planned to implement  a thorough energy efficiency audit, a solar-powered wastewater facility, and transition municipal operations to 100% renewable energy. These efforts would run parallel to sustainable water management and wastewater infrastructure improvements that are designed to guard against future flooding. Community health was another motivation for the 100% target, as this impacted by fossil-fuel pollution and natural disasters. The resolution also emphasizes economic growth, job creation, and reduced utility costs. The city makes use of the Solarize South Carolina program and legislation that not only lifted the cap on net metering and rooftop solar, but also help increase solar energy–related jobs in Columbia by 46% in just one year (2015-2016). Columbia did face some setbacks - solar legislation stipulated a cap if solar output reached 2% of peak energy production.  Rapid growth of solar energy in Columbia and other parts of the state triggered this cap several years sooner than expected, which may have resulted in the loss of many solar-related jobs and a drop in solar power usage. A bill that proposed allowing new customers to install home solar panels failed at the state level. Also, plans to develop a solar-powered wastewater facility were stalled by the 2015 floods, and the local utility backed out. The city has now taken up the project and is looking to redesign and build the facility itself. In December 2017, Columbia became the only city in South Carolina to receive a 3-star certification by STAR Communities, a measure of local sustainability progress against national standards. The city has set a goal to improve its rating from 3 stars to 4 (out of a possible 5) over the next three years.
  • Population: 133,451 (2018)
  • Area: 134.9 sq mi (349 km2)
  • Link: https://www.columbiasc.net/mayor/initiatives/clean-energy
South Carolina State House, Columbia, South Carolina, USA

Concord, New Hampshire, USA

Concord, New Hampshire, USA

  • Target: 100% renewable electricity by 2030, 100% clean energy in all sectors by 2050
  • Status: In progress
  • RES: Solar and wind power
  • Implementation: The state capital of Concord has received strong support from public, private, and faith-based sectors in its goal to achieve a clean energy future, joining three other New Hampshire cities in this quest. The city has begun the planning process to achieve its clean energy goals. On July 9, 2018, the Concord City Council voted unanimously to work toward 100% clean and renewable energy. The resolution already received plenty community support, with endorsements from the State Employees Association, the Unitarian Universalist Church of Concord, the Chamber of Commerce, and the editorial board of The Concord Monitor. The capital’s largest private sector employer, Concord Hospital, was also supportive of the initiative. Concord’s resolution states that Concord Energy and the Environment Advisory Committee will work with the city government to create a stakeholder committee that will help shape Concord’s strategic energy plan. This measure is intended to ensure that every part of the Concord community is able to offer input on the plan, which the city plans to gather through public meetings. Within the first year, the Energy and Environment Committee will lead the development of a strategic plan to establish feasible pathways to complete the transition to 100% clean energy.

    The city has already taken steps in implementation. It is planning the development of a large solar photovoltaic facility on the city’s closed landfill. It is developing changes to the local zoning ordinance to accommodate the siting of solar projects. It is investigating opportunities to use New Hampshire’s Volkswagen settlement money to invest in electric-vehicle charging infrastructure in the city. It is engaging in discussions with major city institutions, local gas and electric utilities, and state policymakers about how best to achieve the adopted renewable energy goals. Concord is also making use of statewide legislation that promotes clean energy for all New Hampshire residents. These measures include tax incentives for individuals, businesses, and nonprofits, as well as net metering for homeowners using solar- or wind-generated power.
  • Population: 43,412 (2018)
  • Area: 67.5 sq mi (174.8 km2)
  • Link: 100% RENEWABLE ENERGY GOAL STRATEGIC PLAN (Draft)
Concord, New Hampshire, USA

Costa Rica

Fortuna, Costa Rica

  • Target: Achieve 100% RE in the electricity sector and to be ‘carbon neutral’, by 2021.
  • Status: In progress - In 2017, Costa Rica supplies around  93% of its total electricity needs from renewable energy sources, mostly from domestic hydro.
  • RES: Hydropower (majority share), solar, biogas, geothermal and wind power.
  • Implementation: Since decreasing rainfall in the future will pose a risk to the electricity system, Costa Rica is diversifying its electricity mix by developing other forms of renewable energy, such as solar, biogas, geothermal, and wind power. The plan is for the state-owned The Instituto Costarricense de Electricidad (ICE) to purchase power from independent power producers in Costa Rica over 15-year contracts. This will mean a gradual decentralization of the electricity system. The country is also encouraging the broader adoption of electric vehicles (EVs), given that transportation represents approximately 44% of final energy consumption. Targeted incentives for the import and sale of EVs as well as for the development of charging infrastructure is offered by the government. 
  • Population: 4,857,274 (2016)
  • Area: 51,100 km2(19,700 sq mi)
  • Link: https://www.theguardian.com/world/2019/feb/25/costa-rica-plan-decarbonize-2050-climate-change-fight
Fortuna, Costa Rica

Del Mar, California, USA

Del Mar, California, USA

  • Target: 100% renewable electricity by 2035
  • Status: In progress
  • RES: Solar energy
  • Implementation: Del Mar is a small coastal city in San Diego County, California. In June 2016, its City Council committed by vote to transition the community to 100% renewable electricity by 2035 as part of a municipal climate action plan. The plan includes an interim target of 50% renewable electricity by 2020. Del Mar's 100% renewable electricity goal is in line with the energy goals of neighbouring City of San Diego, as well as the state goal of 80% greenhouse gas emissions reductions below 1990 levels by 2050. This goal also aims to help reduce greenhouse gas emissions to at least 50 percent below the city's baseline 2012 values by 2035.

    To achieve 100% renewable electricity, the city is exploring the adoption of a Community Choice Aggregation (CCA) program with either local cities or San Diego County. CCA is a state law in California and several other US states that allow local governments in Investor Owned Utility (IOU) territories to aggregate their community's bulk buying power to procure electricity at best rates on the wholesale market or through direct contracts with power producers, and in turn sell it back to constituents. The IOUs continue to manage and charge fees for grid services. This method has been shown to help local communities procure higher shares of renewable electricity and offer it to their residents and commercial customers at a lower rate than their local IOU.

    The City of Del Mar aims to achieve 91% of their renewable electricity supply with a combination of utility scale procurement and distributed solar PV, and the rest using Renewable Energy Credits. Other strategies include encouraging the local IOU (SDG&E ) to achieve 100 percent renewable energy procurement by 2035, installing solar PV on new City Hall and other City facilities, with battery storage systems; introducing EV charging stations and replacing the municipal fleet with e-vehicles.
  • Population: 4,365 (2016)
  • Area: 1.78 sq mi (4.60 km2)
  • Link: https://www.delmar.ca.us/680/Go-Green-Del-Mar
Del Mar, California, USA

Denton, Texas, USA

Old Courthouse, Denton, Texas, USA

  • Target: 100% renewable energy
  • Status: In progress
  • RES: Community and utility-scale solar installations and energy storage.
  • Implementation: The City of Denton was the second municipality in Texas to commit to transition to 100 percent renewable sources of energy. It began with the City Council revising its Renewable Denton Plan, to include the goal of producing enough energy from renewables to meet 100 percent of its electric needs from contracts with solar and wind developers by 2020. A copy of Denton’s ordinance and staff presentation on the energy plan can be seen here and here. By transitioning to renewable energy, the city aims to save people money on their bills, giving the impetus for city leaders and Denton Municipal Electric to dramatically reduce their reliance on  the Gibbons Creek coal plant, as well as ensuring their next renewable energy investments.
  • Population: 113,383 (2010)
  • Area: 89.316 sq mi (231.33 km2)
  • Link: https://www.cityofdenton.com/en-us/government/departments/denton-municipal-electric/renewable-energy
Old Courthouse, Denton, Texas, USA