Alheim, Germany

Alheimerturm, Hessen, Germany

  • Target: 100% renewable electric supply by 2030, 100% renewable heating supply by 2050.
  • Status: In progress
  • RES: Solar photovoltaics, solar thermal, biogas technology and hydropower.
  • Implementation: Alheim is a small town located in northern Hesse, Germany. Back in 1994, its municipal council enforced environmental impact guidelines which mandated that  all construction projects must be subjected to an environmental impact assessment. Ten years later, the town extended these guidelines to include a long-term target to power Alheim entirely from renewable energy sources. The intermediate goals included raising the current share of 75% of electricity supply to 100% until 2030. Similarly, while only 15% of heat is covered by renewable energy today, the aim is to achieve 100% renewable heating by 2050. Today, out of 12.2 Mio kWh produced from renewable energy, solar photovoltaic produces 6.9 Mio kWh, solar thermal energy 1.1 Mio kWh, biogas technology 4,1 Mio kWh and hydro 4.294 kWh. Alheim has profited greatly from the policy framework advancing renewable energy as it has boosted the local economy and created jobs in the region. Heat generated in biogas plants have been used for heating in industrial buildings, thus strengthening the local industry. Meanwhile, solar panels do not only produce energy but also provide shelter for organically farmed chicken on the fields. Alheim’s streets are illuminated with energy-efficient LED lighting and strict ecological guidelines for construction and renovations have been in place since 1994. Indeed, the advancement of renewable energy is part of a broader strategy to promote a lifestyle that is compatible with social and ecological ideals. Ever since Alheim joined energy transition revolution, children have been taught about renewable energy in the local schools and kindergardens.  Alheim council’s website features “Climate Protection To Go”  including tips on energy-efficient driving and cooking. One of the decisive factors for Alheim’s policy on renewable energy has been the political leadership of Mayor Georg Lüdtke who came into office in 1996 and has been committed to the idea ever since. Currently, Alheim is deepening its cooperation with the neighboring regions Bebra and Rotenburg, acting as a role model and strengthening the alliance for the transformation towards decentralized energy supply.
  • Population: 4,951 (2017)
  • Area: 63.83 km(24.64 sq mi)
  • Link: (In German) https://www.alheim.de/texte/seite.php?id=17304
Alheimerturm, Hessen, Germany

Aller-Leine-Tal, Germany

Aller-Leine-Tal, Germany

  • Target: 100+% Renewable Power Region, On Its Way to 100+% Renewable Heat.
  • Status: Achieved - In January 2012, Aller-Leine-Tal produced 108% of its electricity with local renewable sources.
  • RES: Wind turbines, biogas cogeneration plant, solar PV farm and small riverine hydro for electricity. Geothermal energy, biomass and district heating grid for heating.
  • Implementation: The region of Aller-Leine-Tal is located north of Hannover in Lower Saxony, Germany. The region consists of eight municipalities (Kirchlinteln, Dörverden, Wietze, Winsen, Hambühren and the administrative divisions in Ahlden, Rethern, and Schwarmstedt). The regional community has reached and surpassed a 100% renewable electricity goal, and is currently pursuing a 100% renewable heating target. Its efforts began in the late 1990's when the region pledged a commitment to help protect the climate by supporting renewable energy use. In 1996, 60 citizens collaborated to construct the first 660kW windmill. This was eventually replaced by a modern 2.3MW turbine. Today, the region is generating energy from additional 54 windmills, biogas (13 MW), solar PV (14 MW), and some smaller river hydro power providing more energy than needed. To achieve 100% renewable heat, the region will expand use of technologies already employed, including geothermal, biomass to heat, a district heating grid, and improving efficiency. To increase energy conservation, the municipalities offer energy audits and energy consulting. They have also initiated educational programs in local schools to engage and educate students in renewable energy-related activities. The idea is that students should experience and understand renewable energy with there own hands and be given the opportunity to use - and build where possible - renewable energy technologies like wind turbines, water mills, and solar chargers. To increase awareness, the region has created touristic bike paths with more than 40 energy stations that provide information on different renewable energy sources. As an energy exporter, the Aller-Leine-Tal has already set a new target of supplying neighboring areas with renewable energy.
  • Population: 60,087 (2017)
  • Area: 622 km(240 sq mi)
  • Link: http://www.kommunal-erneuerbar.de/energie-kommunen/energie-kommunen/aller-leine-tal.html
Aller-Leine-Tal, Germany

Alzey-Land Region, Germany

Fishmarket, Alzey, Germany

  • Target: 100% renewable energy
  • Status: Achieved
  • RES: Wind farms, biogas plants, a hydroelectric power plant and solar power plants.
  • Implementation: The Alley-Land region is a hilly wine growing region comprising 24 local communities, located in the state of Rheinland-Palatinate, Germany. In 2010, the region reached 100% renewable electricity. To also achieve 100% renewable in heating and transportation, it is seeking to further expand its existing renewable energy infrastructure. Today, renewable energy plants in the Alzey region generates more electricity than its inhabitants consume. 38 wind turbines cover more than 91% of the electricity demand. The rest comes from two biogas plants, a hydroelectric power plant and 156 solar power plants.

    The initiatives in the field of wind power have been largely driven by the private sector. The municipality advises, moderates and creates the planning principles with regards to urban land use planning in order to encourage and guide RES installations. In order to make greater use of wind power, the municipality aims to expand areas for the use of wind power and to identify them in its land use plan. Old turbines will be replaced with newer, more powerful wind turbines to improve the wind power harvest. The Alzey region hosts the largest wind farm in the Rhineland-Palatinate called Park Ober-Flörsheim/Flomborn. Besides wind energy, there are over 150 PV systems installed on private houses, commercial buildings and farm buildings. The Freimersheim solar park produces more than 7.5 million kilowatt hours of electricity each year, able to supply around 2,300 households.
  • Population: 24,805 (2017)
  • Area: 173,87 km²
  • Link: https://www.alzey-land.de/vg/wirtschaft/energiekommune.php
Fishmarket, Alzey, Germany

Bamberg, Germany

Bamberg, Germany

  • Target: Energy self-sufficient by exclusively relying on renewable energies, by 2035.
  • Status: In progress
  • RES: Solar and wind-powered systems, block heating stations, woodchip heating systems, and electric vehicle charging stations.
  • Implementation: The city of Bamberg's strategy to produce energy independently is embedded in its climate change strategy and is integrated into the sustainable development of Bamberg. It has already financed a combination of solar and wind-powered systems, block heating stations as well as woodchip heating systems. In 2009, the Fraunhofer Institute analyzed the resource potential of the city and different scenarios were investigated to optimize the process of RE development. It laid the groundwork for finding the best energy models for the area. The plan would serve 210,000 people for both for electricity and heat. As a member of ”climate alliance”, the city cooperates with surrounding municipalities. The idea is that both the city and its region would benefit from the energy transition: the city has a reliable supply of renewable energy and the surrounding rural areas is the energy producer,  generating income, allowing the development of new business models, and well distributed profits among municipalities. In fact, the city of Bamberg would not have been able to achieve its RE goal if it wasn’t for the rural support, considering the limited urban space. The city involved the industry and engineering sectors in the planning process, as well as the participation of the local community, with processes being guided by the city government. In 2011, the Climate and Energy Agency Bamberg was established to serve as the office of the Climate Alliance Bamberg. In 2012, the city along with 31 municipalities formed the ,,Regionalwerke Bamberg GmbH’’ to combine strategic efforts. Energy consultancy and analysis tools for electricity and heat applications of private households were introduced and more than half of the towns in the area have set up electric vehicle charging stations.
  • Population: 77,179 (2017)
  • Area: 54.62 km2 (21.09 sq mi)
  • Link: https://www.detail-online.com/article/bamberg-is-switching-to-renewable-energy-14255/
Bamberg, Germany

Bruchmühlbach-Miesau, Germany

Bruchmühlbach, Germany

  • Target: 100% renewable energy
  • Status: Achieved
  • RES: Wind farms, biogas cogeneration plants, a solar PV plant, and rooftop solar systems.
  • Implementation: The municipality of Bruchmühlbach-Miesau consists of several small towns and villages, located in the state of Rhineland-Palatinate in the west of Germany. The town of Miesau in particular is well-known for the “Miesau Army Depot” (the largest American ammunition depot outside the US). The town is also just a few miles from the famous Rammstein Airbase and Landstuhl Medical Centre. Today, Bruchsmühlbach-Miesau is also known for its 100% renewable energy supply systems. In order to achieve this 100% goal, the mayor initially approached the US Army authorities with the plan of placing a 1-MW solar PV plant on the roof of storage buildings within the military base. The project was finally approved in 2012 by the local American military authorities and the national German authorities, and following this success, the municipality began planning for a biogas cogeneration plant to be built, also with the US base's cooperation.

    The plants proposed were to help boost the municipality's existing energy infrastructure. By then, it already operated a wind farm consisting of 10 turbines that generated about 37 GWh/a, a biogas plant that generated 2.7 GWh/a, and over 200 rooftop solar systems generating 2 GWh/a.  When a 5 turbine wind farm was completed in 2013, it produced an additional 47 GWh/a. At this point the community of Bruchsmühlbach-Miesau was able to produce 290% of its electricity demand. The wind farms especially enjoyed good support in the area due to strong local participation and the emphasis on regional value creation.

  • Population: 10,500
  • Area: 26.86 km2 (10.37 sq mi)
  • Link: https://cleantechnica.com/2012/04/23/us-military-cooperates-in-german-small-town-energy-revolution/
Bruchmühlbach, Germany

Coelbe District, Germany

Kasseler Straße, Cölbe, Germany

  • Target: 100% renewable energy overall for the community by 2040
  • Status: In progress
  • RES: Solar and biomass energy.
  • Implementation: Coelbe district in Germany is made up of six rural communities (Bernsdorf, Buergeln, Coelbe, Reddehausen, Schoenstadt and Schwarzenborn), located in the state of Hessen. In 2011, the Coelbe government unanimously decided across political party lines to set a community wide target of using only renewable energy resources to meet demand by the year 2040. Similarly in January 2012, the state of Hessen decided  to transition to 100% renewable energy by 2050.
    Coelbe has created a climate protection plan that lays out how they will achieve the 100% target. The plan takes into account appropriate technologies, costs, integration with climate goals, public relations, and action steps. Coelbe anticipates that by transitioning to renewable energy and efficiency upgrades, it will save up to € 5 million in energy costs annually. Milestones achieved so far include solar panel installations on several municipal properties. The largest generates enough electricity to meet more than 10% of Coelbe's power demand. It is jointly owned by the municipality and by individuals who have personally invested in shares or certificates that generate 6.8% returns, ensuring that the local citizens and community reap the economic benefits of the solar system. Another example of community's energy transition is a heating grid in Schoenstadt built by the village cooperative, fueled by wood chips from the local saw mill, and which supplies heat for 80% of the village buildings. Such projects have attracted visitors from other countries to come learn best practices and have engaged local community members to volunteer to help manage them.
  • Population: 11600 (2017)
  • Area: 73 km2 (28.18 sq mi)
  • Link: https://www.coelbe.de/energie/mein-coelbe/111-energie/173-erneuerbare-energien
Kasseler Straße, Cölbe, Germany

Dardesheim, Germany

Dardesheim, Germany

  • Target: Energy self-sufficiency by becoming independent from fossil-fuel based energy sources.
  • Status: Achieved
  • RES: 32 wind turbines with a total wind power capacity of 68,9 MW, nine solar power plants, biomass-based heating systems, and household solar collectors.
  • Implementation: Dardesheim has pioneered the use of renewable energy sources in Germany since one of the first wind turbines was erected in Saxony-Anhalt in 1993. This windpark expanded in 1994 following an agreement with a wind turbine company. Today, the local hill of Druiberg is covered with 32 wind turbines with a total wind power capacity that is equivalent to about forty times the total annual electricity consumption of Dardesheim or 15 times the overall energy demand, including electricity, heating or cooling and fuel for transportation. By 2017, seven additional wind turbines and a battery storage system have been added to the system. The storage system works to temper the effects of varying wind conditions. Besides wind power, nine solar power plants also produce one third of Dardesheim’s electricity demand since 2005. In addition, household solar collectors on roofs provide warm water and there are several biomass-based heating systems in town. In 2005, two local car companies started to offer the exchange of diesel-fuel driven engines with biodiesel engines fuelled by domestically grown rapeseed oil. Near the town hall, a plug-in station for electric cars was constructed. The success of the town can be attributed to to the transparency accompanying the overall process. The bimonthly published info sheet ”Dardesheimer Windblatt” is delivered to every household free of charge, providing everyone with the latest developments on the Dardesheim energy project. The wind park regularly offers guided tours.
  • Population: 750 (2011)
  • Area: 0.952 km²
  • Link: https://www.powerengineeringint.com/articles/print/volume-16/issue-2/features/germany-focus-renewables/renewables-an-essential-part-of-germanyrsquos-future.html
Dardesheim, Germany

Effelter, Germany

Effelter, Germany

  • Target: 100% renewable energy
  • Status: Achieved
  • RES: Biogas plant, wood chip boiler, cogeneration units, district heating network and solar PV.
  • Implementation: Effelter is a small rural village located in the northern part of Bavaria, Germany. Today, the village is producing 200% of its electricity consumption and meeting all of its heating needs with biomass, a local renewable resource. All of the power plants are owned by local citizens. Effelter's renewable energy transition began in 2001 when the installation of one biogas plant began to quickly garner community interest. The plant was soon supplying all of Effelter's heat requirements. Including two 65 kW combined heat and power units, along with a 500 kW wood chip boiler that provides extra backup in winter, the heat generated was distributed to every house via a 2.4 km / 1.4 mile long hot water pipe network. Combined with the installation of 160kW of solar PV on roofs, the biogas fuelled cogeneration units, the village was able to produce more than twice the electricity it needs.

    Raw material and waste from the agricultural and forestry sectors in the area helps fuel the village's energy plants. The biogas plant sources agricultural waste, liquid manure and grass from local farmers. The wood chips for the boiler plant are sourced from local forestry waste. The by-product from the biogas plant is used as a fertilizer, while the ashes from the wood chip boiler also helps to nourish the local forest.
  • Population: 244 (2015)
  • Link: http://bioenergiedorf-effelter.de/?lang=en
Effelter, Germany

Feldheim, Germany

Feldheim, Treuenbrietzen, Germany

  • Target: 100% renewable energy self-sufficient, climate neutral village.
  • Status: Achieved
  • RES: Wind farm and biogas-fired thermal power station.
  • Implementation: In 1997, Feldheim local council began by installing four wind turbines together with local residents and start-up company “Energiequelle”. By 2015, the number had expanded to 47 wind turbines with a total capacity of 74MW. A battery system saved surplus energy, enough to supply electricity to the village for two days. In 2008, the community decided to build a biogas plant to further reduce energy costs by providing district heating. The biogas-fired thermal power station covers the total heating demand of the village and the surplus heat is used to generate electricity. In that same year, a solar park was added to the system, producing electricity for 600 households. The rapid growth in renewable energy development led to the establishment of the Feldheim Energie GmbH & Co. KG by local citizens. The company planned to directly supply district heating and electricity to the community instead of just feeding power into the national grid. However, the regional utility company E.ON refused to sell nor lease the grid to the villagers. In response, with financial support of the EU, Feldheim decided to build their own electricity and district heating grid, which ultimately made them entirely energy-sufficient (in heating and electricity) and a climate neutral village by 2010. Feldheim sells 99% of the energy produced by its wind park, CO2 emissions have been drastically reduced, energy prices have dropped by a third and citizens are no longer affected by rising gas or oil prices.
  • Population: 128 (2010)
  • Area: 15,7 km²
  • Link: https://nef-feldheim.info/the-energy-self-sufficient-village/?lang=en
Feldheim, Treuenbrietzen, Germany

Frankfurt am Main, Germany

Frankfurt, Germany

  • Target: 100% renewable energy
  • Status: In progress
  • RES: Combined heat and power (CHP), solar thermal and PV, wind power, and the use of local organic wastes for both heating and power generation.
  • Implementation: The city of Frankfurt is a global financial hub and has positioned itself as a leader in sustainability and climate protection for several decades. In 1985, it founded one of the first municipal energy and climate protection agencies, which has worked extensively on promoting energy efficiency in local buildings and the adoption of combined heat and power systems. In 2008, the Frankfurt City Council agreed to implement a list of fifty energy saving and climate protection measures. The current Master Plan includes a dynamic array of projects and initiatives designed both to reduce emissions and to increase the adoption of renewable energy and energy efficiency technologies. Between 1990 and 2012, the City managed to reduce its emissions by 15% while the economy grew by over 50%.
    Frankfurt implements projects by combining a top-down and bottom-up strategy, involving local citizens and businesses. The city benefits from a highly educated workforce, and a citizenry that broadly supports climate action and the continued expansion of energy efficiency and renewable energy. In addition, both the federal and state-level governments have provided funds to help support Frankfurt’s 100% strategy. The city aims to increase awareness within local schools through a wide range of onsite projects in schools across the city. The City’s Energy Agency is in the process of elaborating on its Master Plan, a strategy whose implementation will involve architects, engineers, consultants, local businesses, public buildings such as schools and hospitals, as well as local residents.
    Due to the fact that Frankfurt is a relatively dense urban area, city representatives and local experts determined Frankfurt would need to rely on neighbouring communities and the surrounding rural area in order to reach the target of supplying 100 % the cities total energy needs from renewable energy sources. The current Master Plan envisions that approximately 25% will be supplied from energy generated within the City, 25% from outside the City, and total energy consumption will be decreased by 50%. Key elements of the strategy include increasing energy efficiency by 50 %, expanding combined heat and power (CHP) and increasing the role of solar (both thermal and PV), wind, and the use of local organic wastes for both heating and power generation. In addition, there are a number of pilots underway, including the initiative to develop a Virtual Power Plant (VPP), which would be designed to integrate several small generators into an interconnected network capable of adjusting to fluctuations in RE output.
  • Population: 746,878 (2017) city, 5,604,523 (2017) metro
  • Area: 248.31 km2 (95.87 sq mi)
  • Link: https://www.frankfurt.de/sixcms/detail.php?id=3077
Frankfurt, Germany