Concord, New Hampshire, USA

Concord, New Hampshire, USA

  • Target: 100% renewable electricity by 2030, 100% clean energy in all sectors by 2050
  • Status: In progress
  • RES: Solar and wind power
  • Implementation: The state capital of Concord has received strong support from public, private, and faith-based sectors in its goal to achieve a clean energy future, joining three other New Hampshire cities in this quest. The city has begun the planning process to achieve its clean energy goals. On July 9, 2018, the Concord City Council voted unanimously to work toward 100% clean and renewable energy. The resolution already received plenty community support, with endorsements from the State Employees Association, the Unitarian Universalist Church of Concord, the Chamber of Commerce, and the editorial board of The Concord Monitor. The capital’s largest private sector employer, Concord Hospital, was also supportive of the initiative. Concord’s resolution states that Concord Energy and the Environment Advisory Committee will work with the city government to create a stakeholder committee that will help shape Concord’s strategic energy plan. This measure is intended to ensure that every part of the Concord community is able to offer input on the plan, which the city plans to gather through public meetings. Within the first year, the Energy and Environment Committee will lead the development of a strategic plan to establish feasible pathways to complete the transition to 100% clean energy.The city has already taken steps in implementation. It is planning the development of a large solar photovoltaic facility on the city’s closed landfill. It is developing changes to the local zoning ordinance to accommodate the siting of solar projects. It is investigating opportunities to use New Hampshire’s Volkswagen settlement money to invest in electric-vehicle charging infrastructure in the city. It is engaging in discussions with major city institutions, local gas and electric utilities, and state policymakers about how best to achieve the adopted renewable energy goals. Concord is also making use of statewide legislation that promotes clean energy for all New Hampshire residents. These measures include tax incentives for individuals, businesses, and nonprofits, as well as net metering for homeowners using solar- or wind-generated power.
  • Population: 43,412 (2018)
  • Area: 67.5 sq mi (174.8 km2)
  • Link: 100% RENEWABLE ENERGY GOAL STRATEGIC PLAN
Concord, New Hampshire, USA

Cook Islands

Cook Islands

  • Target: Eliminate carbon emissions by 2020.
  • Status: In progress
  • RES: Solar photovoltaic arrays
  • Implementation: The Cook Islands depend heavily on imported fuels and the cost of electricity based on these fuels is very high. Although nearly all households in the Cook Islands are connected to grid electricity, only 5.5% of households have additional solar photovoltaic systems installed, and 1% use small diesel generators. Several actions have taken place throughout the islands to increase the uptake of renewable energy. In the country's south, the Asian Development Bank's Ordinary Capital Resources has loaned US$11.19 to help fund solar projects. The EU has invested US$7.26 million, and the Cook Islands government has added an in-kind contribution of US$5.83 million. The total funding for the build out comes with an installation target in megawatts. The solar projects is expected to save 1.09 million liters of diesel consumption annually, and cut carbon dioxide emissions by 2,930 tons. This project will assist the Cook Islands government’s Office of the Energy Commissioner and the Renewable Energy Development Division in developing an energy efficiency policy implementation plan. In May 2015, the Government of New Zealand announced the completion of solar array projects in Rakahanga, Pukapuka, Nassau, Palmerston, and on the northern Cook islands of Penrhyn and Manihiki, where solar photovoltaic panels are expected to provide over 95 per cent of the electricity needs for the villages they connect to and deliver power to more than 230 homes and public buildings.
  • Population: 17,379 (2016)
  • Area: 236.7 km2 (91.4 sq mi)
  • Link: COOK ISLANDS RENEWABLE ENERGY
Cook Islands

Copenhagen, Denmark

Copenhagen, Denmark

  • Target: Carbon neutral capital by 2025
  • Status: In progress
  • RES: Windpower, solar energy, biomass cogeneration plants, biogas and hybrid buses, electrical and hydrogen-powered cars, and energy retrofitted buildings.
  • Implementation: The city of Copenhagen, Denmark, aims at be a carbon neutral capital by 2025. In 2014, the city received the European Green Capital Award and in 2013 the Climate Leadership Prize. In 2009, Copenhagen City Council adopted a 2015 climate plan for the city, which resulted in a reduction of COemissions by 21% by 2011 in comparison to 2005 figures. To reach the 2025 carbon free target, the city will focus on four main areas: energy consumption, energy production, mobility, and city administration initiatives. It includes the construction of land and offshore wind turbines, energy retrofitted buildings, implementation of Low-Energy Construction in all buildings, and promotion of solar energy. In addition to that, the city plans the switch from coal to biomass in heat and power plants, geothermal plant, more renewable energy in the country´s electricity grid, and the obligation of energy companies to save energy. The capital is also taking into account the stricter European regulations on fuel efficiency, the promotion of cycling, biogas and hybrid buses, and the introduction of electrical and hydrogen-powered cars. The city administration is reducing its own energy consumption in its buildings by 40% in comparison to 2010, and is fuelling all city administration vehicles with electricity, hydrogen, or biofuels.. The constant evaluation and follow-up of the city's Plan is secured through the preparation of an annual report and meeting of various stakeholders for dialogue and benchmarking. In addition to that, three general evaluations of the plan would occur: in 2015-2016 to evaluate the period 2013-2016, in 2019-2020 to evaluate the period 2017-2020, and in 2025-2026 when the final evaluation of the plan will take place.
  • Population: 777,218 (city), 2,057,737 (metro) (2018)
  • Area: 178.46 km2 (68.90 sq mi)(city), 1,767.52 km2(682.44 sq mi)(metro)
  • Link: Carbon Neutral Copenhagen
Copenhagen, Denmark

Costa Rica

Fortuna, Costa Rica

  • Target: Achieve 100% RE in the electricity sector and to be ‘carbon neutral’, by 2021.
  • Status: In progress - In 2017, Costa Rica supplies around  93% of its total electricity needs from renewable energy sources, mostly from domestic hydro.
  • RES: Hydropower (majority share), solar, biogas, geothermal and wind power.
  • Implementation: Since decreasing rainfall in the future will pose a risk to the electricity system, Costa Rica is diversifying its electricity mix by developing other forms of renewable energy, such as solar, biogas, geothermal, and wind power. The plan is for the state-owned The Instituto Costarricense de Electricidad (ICE) to purchase power from independent power producers in Costa Rica over 15-year contracts. This will mean a gradual decentralization of the electricity system. The country is also encouraging the broader adoption of electric vehicles (EVs), given that transportation represents approximately 44% of final energy consumption. Targeted incentives for the import and sale of EVs as well as for the development of charging infrastructure is offered by the government. 
  • Population: 4,857,274 (2016)
  • Area: 51,100 km2(19,700 sq mi)
  • Link: https://www.theguardian.com/world/2019/feb/25/costa-rica-plan-decarbonize-2050-climate-change-fight
Fortuna, Costa Rica

Dardesheim, Germany

Dardesheim, Germany

  • Target: Energy self-sufficiency by becoming independent from fossil-fuel based energy sources.
  • Status: Achieved
  • RES: 32 wind turbines with a total wind power capacity of 68,9 MW, nine solar power plants, biomass-based heating systems, and household solar collectors.
  • Implementation: Dardesheim has pioneered the use of renewable energy sources in Germany since one of the first wind turbines was erected in Saxony-Anhalt in 1993. This windpark expanded in 1994 following an agreement with a wind turbine company. Today, the local hill of Druiberg is covered with 32 wind turbines with a total wind power capacity that is equivalent to about forty times the total annual electricity consumption of Dardesheim or 15 times the overall energy demand, including electricity, heating or cooling and fuel for transportation. By 2017, seven additional wind turbines and a battery storage system have been added to the system. The storage system works to temper the effects of varying wind conditions. Besides wind power, nine solar power plants also produce one third of Dardesheim’s electricity demand since 2005. In addition, household solar collectors on roofs provide warm water and there are several biomass-based heating systems in town. In 2005, two local car companies started to offer the exchange of diesel-fuel driven engines with biodiesel engines fuelled by domestically grown rapeseed oil. Near the town hall, a plug-in station for electric cars was constructed. The success of the town can be attributed to to the transparency accompanying the overall process. The bimonthly published info sheet ”Dardesheimer Windblatt” is delivered to every household free of charge, providing everyone with the latest developments on the Dardesheim energy project. The wind park regularly offers guided tours.
  • Population: 750 (2011)
  • Area: 0.952 km²
  • Link: Dardesheim Energiekommune
Dardesheim, Germany

Del Mar, California, USA

Del Mar, California, USA

  • Target: 100% renewable electricity by 2035
  • Status: In progress
  • RES: Solar energy
  • Implementation: Del Mar is a small coastal city in San Diego County, California. In June 2016, its City Council committed by vote to transition the community to 100% renewable electricity by 2035 as part of a municipal climate action plan. The plan includes an interim target of 50% renewable electricity by 2020. Del Mar's 100% renewable electricity goal is in line with the energy goals of neighbouring City of San Diego, as well as the state goal of 80% greenhouse gas emissions reductions below 1990 levels by 2050. This goal also aims to help reduce greenhouse gas emissions to at least 50 percent below the city's baseline 2012 values by 2035.

    To achieve 100% renewable electricity, the city is exploring the adoption of a Community Choice Aggregation (CCA) program with either local cities or San Diego County. CCA is a state law in California and several other US states that allow local governments in Investor Owned Utility (IOU) territories to aggregate their community's bulk buying power to procure electricity at best rates on the wholesale market or through direct contracts with power producers, and in turn sell it back to constituents. The IOUs continue to manage and charge fees for grid services. This method has been shown to help local communities procure higher shares of renewable electricity and offer it to their residents and commercial customers at a lower rate than their local IOU.

    The City of Del Mar aims to achieve 91% of their renewable electricity supply with a combination of utility scale procurement and distributed solar PV, and the rest using Renewable Energy Credits. Other strategies include encouraging the local IOU (SDG&E ) to achieve 100 percent renewable energy procurement by 2035, installing solar PV on new City Hall and other City facilities, with battery storage systems; introducing EV charging stations and replacing the municipal fleet with e-vehicles.
  • Population: 4,365 (2016)
  • Area: 1.78 sq mi (4.60 km2)
  • Link: https://www.delmar.ca.us/680/Go-Green-Del-Mar
Del Mar, California, USA

Denmark

Copenhagen, Denmark

  • Target: Phase out fossil fuel use entirely in all energy sectors (including transportation) by 2050.
  • Status: In progress - In 2011, the share of renewable energy in the transportation mix was less than 1%, compared to a share of approximately 40% in the electricity mix.
  • RES: Wind and solar power, combined heat and power systems, renewable forms of heating such as solar thermal, ground-source heat pumps, and wood-based biomass.
  • Implementation: Denmark’s domestic energy policy aims at 100% transition of the energy system toward renewable energy technologies by significant expansions of wind and solar power as well as the continued installation of combined heat and power (CHP) systems. In the heating sector, Denmark is expanding the use of biogas, solar thermal, ground-source heat pumps, and wood-based biomass. It plans to increase the use of electric vehicles and public transit. Denmark is relying greatly on fiscal policies (feed-in tariff, a net metering framework, environmental taxes) to achieve its 100% renewable energy objectives. There are taxes on fossil fuels and carbon pollution. This increases the costs of gasoline, diesel, coal, and heating oil but makes the use of local, renewable sources of energy more attractive. There are also tax incentives or cash grants to encourage specific technologies, such as electric vehicles. Also is a focus on energy efficiency which correlates to current EU plans (20% reduction in energy use by 2020). This means increasing energy efficiency in existing buildings via extensive retrofitting and raising the standards on all new construction. To increase broader electrification, Denmark is also converting its wind resources into thermal form (e.g. feeding wind power into the district heating system and into on-site water heaters) as well as into battery storage for the transport system. Solar thermal technologies will supply heat directly into the country’s district heating systems. Denmark also plans to expand the use of renewable energy in its island regions, such as the Faroe Islands. Expansion of transmission links with neighbouring Germany and Sweden will allow more imports and exports of renewable electricity. Good public support for the 100% strategy has been due to a high level of energy and environmental awareness among its citizens and its politicians, cultivated since the 1973 oil crisis (and even before). Denmark also benefits from a small population, a highly educated workforce, and a number of reputable private and public organisations to support the strategy's implementation. Denmark expects planned investments to be around EUR 750 Million, with savings in energy costs of around EUR 920 Million, both by 2020.
  • Population: 5,806,015 (2018)
  • Area: 2,220,930 km2(857,510 sq mi)
  • Link: https://www.theguardian.com/environment/2015/jul/10/denmark-wind-windfarm-power-exceed-electricity-demand
Copenhagen, Denmark

Denton, Texas, USA

Old Courthouse, Denton, Texas, USA

  • Target: 100% renewable energy
  • Status: In progress
  • RES: Community and utility-scale solar installations and energy storage.
  • Implementation: The City of Denton was the second municipality in Texas to commit to transition to 100 percent renewable sources of energy. It began with the City Council revising its Renewable Denton Plan, to include the goal of producing enough energy from renewables to meet 100 percent of its electric needs from contracts with solar and wind developers by 2020. A copy of Denton’s ordinance and staff presentation on the energy plan can be seen here and here. By transitioning to renewable energy, the city aims to save people money on their bills, giving the impetus for city leaders and Denton Municipal Electric to dramatically reduce their reliance on  the Gibbons Creek coal plant, as well as ensuring their next renewable energy investments.
  • Population: 113,383 (2010)
  • Area: 89.316 sq mi (231.33 km2)
  • Link: Denton Municipal Electric (DME)
Old Courthouse, Denton, Texas, USA

Denver, Colorado, USA

Speer Boulevard, Denver, Colorado, USA

  • Target: 100% clean electricity city-wide by 2030 and 30% by 2020 for investor-owned utilities (state targets), 55% renewable energy by 2026 (electric utility - Xcel Energy target)
  • Status: In progress
  • RES: Solar energy, electric mobility
  • Implementation: The City of Denver is teaming up with utility provider Xcel Energy to invest in a greener future for all. In a state historically dominated by coal and fracked gas, Colorado consumers are now demanding more sustainable energy. Xcel Colorado (Public Service Company of Colorado or PSCO) is laying out major investment plans for clean energy infrastructure. When Denver joined nine other Colorado communities in July 2018 in making the commitment to transition to 100% clean, renewable electricity by 2030, it came on the basis of a Climate Action Plan created in 2015 that pledged to reduce carbon emissions by 80% by the year 2050. Under the leadership of Mayor Michael Hancock, the 80x50 Climate Action Plan would go beyond clean power. It would incorporate strategies for land use and development, home and business efficiency upgrades, and mass transit planning to meet the city’s 80% carbon reduction goal. The plan also includes provisions for a community solar program, a net-zero building code for new construction by 2035, and a fleet of 100% electric light-duty vehicles, taxis, and car shares by 2050.Reaching these goals will require strong strategic partnerships. Denver has received support from more than 50 nonprofits and businesses for its clean energy plans. Organisations include the Working Families Party, the Colorado Latino Forum, the Denver NAACP, the Democratic Party, and the Denver Labor Federation. The local utility, PSCO, has recently finalized encouraging agreements with Colorado communities. Given that Denver accounts for 25% of Xcel’s retail sales, the city has been able to act on community pressure urging the utility transition to clean energy. Xcel has since announced plans to replace two units at Colorado’s largest coal plant with a $2.5 billion investment in clean energy generation. The plan is expected to save more than $213 million, while reducing carbon emissions by 59%. By 2026, Xcel plans for 55% of the energy they generate in Colorado to come from renewable sources. As a model for the rest of the country, Colorado is the first state in which the renewable portfolio standard is set by public vote, rather than by legislation; its abundant wind and solar resources make the transition to clean energy both affordable and logical.
  • Population: 716,492 (2018)
  • Area: 154.97 sq mi (401.36 km2)
  • Link: American Cities Climate Challenge: Denver
Speer Boulevard, Denver, Colorado, USA

Dobbiaco (Toblach), Italy

Dobbiaco, Italy

  • Target: 100% renewable energy
  • Status: Achieved
  • RES: Solar PV and thermal collectors, hydro power plant, biomass district heating plant and  biogas facility.
  • Implementation: The city of Dobbiaco is located 1,256 m above sea level, in the Pusteria Valley in the northern Italian region of Trentino Alto-Adige. It was awarded by the Italian Environment League the title of “Renewable Town” in 2009 and 2011, and was also included in the Res Champions League of 2011. In terms of electricity production, extensive energy supply has been achieved through solar PV panels with an installed capacity of 1,590 kW and a 1,783 kW mini-hydro power plant whose production capacity exceeds the electric needs of households of Dobbiaco. There are also 1,350 square meters of solar thermal collectors installed as well as a district heating network connected to two installations. One is an 18 MW thermal biomass plant and the other one is a 132 kW biogas facility. Together they produce more energy than the heating needs of Dobbiaco. The biomass district heating plant opened in 1995 and it is able to also satisfy the heat demand of the neighboring town of San Candido. The biomass used in this plant is composed of locally sourced wood chips derived from pruning residues, bark residues, and wood waste from sawmill and various factories. Thanks to this combination of technologies, Dobbiaco produces more electricity and thermal energy than that is consumed by households.
  • Population: 3,283 (2010)
  • Area: 126.6 km2 (48.9 sq mi)
  • Link: https://www.suedtirol.info/en/experience/sustainable-holiday/south-tyrol-backs-sustainability
Dobbiaco, Italy