Alheim, Germany

Alheimerturm, Hessen, Germany

  • Target: 100% renewable electric supply by 2030, 100% renewable heating supply by 2050.
  • Status: In progress
  • RES: Solar photovoltaics, solar thermal, biogas technology and hydropower.
  • Implementation: Alheim is a small town located in northern Hesse, Germany. Back in 1994, its municipal council enforced environmental impact guidelines which mandated that  all construction projects must be subjected to an environmental impact assessment. Ten years later, the town extended these guidelines to include a long-term target to power Alheim entirely from renewable energy sources. The intermediate goals included raising the current share of 75% of electricity supply to 100% until 2030. Similarly, while only 15% of heat is covered by renewable energy today, the aim is to achieve 100% renewable heating by 2050. Today, out of 12.2 Mio kWh produced from renewable energy, solar photovoltaic produces 6.9 Mio kWh, solar thermal energy 1.1 Mio kWh, biogas technology 4,1 Mio kWh and hydro 4.294 kWh. Alheim has profited greatly from the policy framework advancing renewable energy as it has boosted the local economy and created jobs in the region. Heat generated in biogas plants have been used for heating in industrial buildings, thus strengthening the local industry. Meanwhile, solar panels do not only produce energy but also provide shelter for organically farmed chicken on the fields. Alheim’s streets are illuminated with energy-efficient LED lighting and strict ecological guidelines for construction and renovations have been in place since 1994. Indeed, the advancement of renewable energy is part of a broader strategy to promote a lifestyle that is compatible with social and ecological ideals. Ever since Alheim joined energy transition revolution, children have been taught about renewable energy in the local schools and kindergardens.  Alheim council’s website features “Climate Protection To Go”  including tips on energy-efficient driving and cooking. One of the decisive factors for Alheim’s policy on renewable energy has been the political leadership of Mayor Georg Lüdtke who came into office in 1996 and has been committed to the idea ever since. Currently, Alheim is deepening its cooperation with the neighboring regions Bebra and Rotenburg, acting as a role model and strengthening the alliance for the transformation towards decentralized energy supply.
  • Population: 4,951 (2017)
  • Area: 63.83 km(24.64 sq mi)
  • Link: (In German) https://www.alheim.de/texte/seite.php?id=17304
Alheimerturm, Hessen, Germany

Aller-Leine-Tal, Germany

Aller-Leine-Tal, Germany

  • Target: 100+% Renewable Power Region, On Its Way to 100+% Renewable Heat.
  • Status: Achieved - In January 2012, Aller-Leine-Tal produced 108% of its electricity with local renewable sources.
  • RES: Wind turbines, biogas cogeneration plant, solar PV farm and small riverine hydro for electricity. Geothermal energy, biomass and district heating grid for heating.
  • Implementation: The region of Aller-Leine-Tal is located north of Hannover in Lower Saxony, Germany. The region consists of eight municipalities (Kirchlinteln, Dörverden, Wietze, Winsen, Hambühren and the administrative divisions in Ahlden, Rethern, and Schwarmstedt). The regional community has reached and surpassed a 100% renewable electricity goal, and is currently pursuing a 100% renewable heating target. Its efforts began in the late 1990's when the region pledged a commitment to help protect the climate by supporting renewable energy use. In 1996, 60 citizens collaborated to construct the first 660kW windmill. This was eventually replaced by a modern 2.3MW turbine. Today, the region is generating energy from additional 54 windmills, biogas (13 MW), solar PV (14 MW), and some smaller river hydro power providing more energy than needed. To achieve 100% renewable heat, the region will expand use of technologies already employed, including geothermal, biomass to heat, a district heating grid, and improving efficiency. To increase energy conservation, the municipalities offer energy audits and energy consulting. They have also initiated educational programs in local schools to engage and educate students in renewable energy-related activities. The idea is that students should experience and understand renewable energy with there own hands and be given the opportunity to use - and build where possible - renewable energy technologies like wind turbines, water mills, and solar chargers. To increase awareness, the region has created touristic bike paths with more than 40 energy stations that provide information on different renewable energy sources. As an energy exporter, the Aller-Leine-Tal has already set a new target of supplying neighboring areas with renewable energy.
  • Population: 60,087 (2017)
  • Area: 622 km(240 sq mi)
  • Link: http://www.kommunal-erneuerbar.de/energie-kommunen/energie-kommunen/aller-leine-tal.html
Aller-Leine-Tal, Germany

Alzey-Land Region, Germany

Fishmarket, Alzey, Germany

  • Target: 100% renewable energy
  • Status: Achieved
  • RES: Wind farms, biogas plants, a hydroelectric power plant and solar power plants.
  • Implementation: The Alley-Land region is a hilly wine growing region comprising 24 local communities, located in the state of Rheinland-Palatinate, Germany. In 2010, the region reached 100% renewable electricity. To also achieve 100% renewable in heating and transportation, it is seeking to further expand its existing renewable energy infrastructure. Today, renewable energy plants in the Alzey region generates more electricity than its inhabitants consume. 38 wind turbines cover more than 91% of the electricity demand. The rest comes from two biogas plants, a hydroelectric power plant and 156 solar power plants.

    The initiatives in the field of wind power have been largely driven by the private sector. The municipality advises, moderates and creates the planning principles with regards to urban land use planning in order to encourage and guide RES installations. In order to make greater use of wind power, the municipality aims to expand areas for the use of wind power and to identify them in its land use plan. Old turbines will be replaced with newer, more powerful wind turbines to improve the wind power harvest. The Alzey region hosts the largest wind farm in the Rhineland-Palatinate called Park Ober-Flörsheim/Flomborn. Besides wind energy, there are over 150 PV systems installed on private houses, commercial buildings and farm buildings. The Freimersheim solar park produces more than 7.5 million kilowatt hours of electricity each year, able to supply around 2,300 households.
  • Population: 24,805 (2017)
  • Area: 173,87 km²
  • Link: https://www.alzey-land.de/vg/wirtschaft/energiekommune.php
Fishmarket, Alzey, Germany

Aruba

Aruba

  • Target: Cover all electricity demand by 100% renewable sources by 2020.
  • Status: In progress - To date, 15.4% electricity generation is from renewable energy.
  • RES: 30-MW wind park, and waste-to-energy project generating electricity through biogas.
  • Implementation: The Caribbean island of Aruba in the Caribbean is an autonomous member of the Kingdom of the Netherlands located off the coast of Venezuela. Aruba's economy is based largely on tourism with nearly 1.5 million visitors per year, which has contributed to Aruba’s high population density with about 500 people per square kilometre (more than New York). In response, the Government of Aruba realised that the island’s economic development must shift in order to maintain and preserve the country's infrastructure and natural resources. In 2009, Aruba launched the islands first wind park. In 2011, the Government published its economic vision and policy plan with the title “The Green Gateway”. It includes plans to promote renewable energy on the island in order to secure and preserve its valuable but fragile natural resources. During the Rio +20 United Nations Conference on Sustainable Development in 2012, the island announced it aim to cover its electricity demand by 100% renewable sources by 2020. In the same year, Aruba together with other Caribbean islands became member of the Carbon War Room’s Ten Island Challenge, an initiative launched at the Rio +20 Conference aiming for islands to shift towards 100% renewable energy. The benefits of becoming 100% renewable for Aruba include: reducing its heavy dependency on fossil fuel, thus making it less vulnerable to global oil price fluctuations, drastically reducing CO2 emissions, and preserving its natural environment.
  • Population: 104,822 (2016)
  • Area: 178.91 km2 (69.08 sq mi)
  • Link: http://www.utilitiesarubanv.com/main/wp-content/uploads/pdf/green-deck-aruba.pdf
Aruba

Aspen, Colorado, USA

Aspen, Colorado, USA

  • Target: 100% renewable energy
  • Status: Achieved
  • RES: Hydropower, windpower, and land-fill gas energy.
  • Implementation: The City of Aspen is located in the Rocky Mountains in the state of Colorado. As one of the most famous skiing resorts in the USA, Aspen welcomes many tourists every year. In particular, the city's winter population grows from approximately 7,000 to 50,000 people. This means that Aspen has to deal with a significantly higher energy consumption in winter compared to the rest of the year. In 1885, Aspen was already one of the first American municipalities to use hydroelectric power, and by 2014, hydroplants were covering 86% of the energy demand. The boost in hydropower has been largely due to the Canary Initiative, which was established in 2005, which identified Aspen and other mountain communities as “canaries in the coal mine” with respect to their sensitivity to the effects of climate change. The initiative laid out a Climate Action Plan, which would reduce GHG emissions by converting its energy supply to one based on RE. In cooperation with the National Renewable Energy Laboratory the city developed a strategy how to achieve this. Investments in renewable energy have enabled the utility to progressively replace fossil fuels. Finally, in August of 2015, the City of Aspen municipally owned electric utility achieved 100% renewable energy, by signing of a contract with the Municipal Energy Agency of Nebraska, a wholesale electric energy provider. Since then, the energy mix in the electricity sector is assembled by 46% hydro, 53% wind and 1% landfill gas energy. The new wind contract, which provides 95% of the new renewable energy, allows the city to only buy what it needs to keep it close to 100% renewable energies. The advantage of this arrangement is that it affords crucial supply management flexibility for dealing with inconsistencies in energy production from Aspen’s other resources, such as the fluctuations in hydro power. It also allows the city to avoid being forced to buy energy they do not need.
  • Population: 6,871 (2016)
  • Area: 3.88 sq mi (10.05 km2)
  • Link: https://www.nrel.gov/docs/fy15osti/62490.pdf
Aspen, Colorado, USA

Bamberg, Germany

Bamberg, Germany

  • Target: Energy self-sufficient by exclusively relying on renewable energies, by 2035.
  • Status: In progress
  • RES: Solar and wind-powered systems, block heating stations, woodchip heating systems, and electric vehicle charging stations.
  • Implementation: The city of Bamberg's strategy to produce energy independently is embedded in its climate change strategy and is integrated into the sustainable development of Bamberg. It has already financed a combination of solar and wind-powered systems, block heating stations as well as woodchip heating systems. In 2009, the Fraunhofer Institute analyzed the resource potential of the city and different scenarios were investigated to optimize the process of RE development. It laid the groundwork for finding the best energy models for the area. The plan would serve 210,000 people for both for electricity and heat. As a member of ”climate alliance”, the city cooperates with surrounding municipalities. The idea is that both the city and its region would benefit from the energy transition: the city has a reliable supply of renewable energy and the surrounding rural areas is the energy producer,  generating income, allowing the development of new business models, and well distributed profits among municipalities. In fact, the city of Bamberg would not have been able to achieve its RE goal if it wasn’t for the rural support, considering the limited urban space. The city involved the industry and engineering sectors in the planning process, as well as the participation of the local community, with processes being guided by the city government. In 2011, the Climate and Energy Agency Bamberg was established to serve as the office of the Climate Alliance Bamberg. In 2012, the city along with 31 municipalities formed the ,,Regionalwerke Bamberg GmbH’’ to combine strategic efforts. Energy consultancy and analysis tools for electricity and heat applications of private households were introduced and more than half of the towns in the area have set up electric vehicle charging stations.
  • Population: 77,179 (2017)
  • Area: 54.62 km2 (21.09 sq mi)
  • Link: https://www.detail-online.com/article/bamberg-is-switching-to-renewable-energy-14255/
Bamberg, Germany

Bamiyan, Afghanistan

Bamiyan, Afghanistan

  • Target: To supply power to remote communities.
  • Status: In progress - The Bamiyan Renewable Energy Program (BREP) developed a large-scale, solar photovoltaic (PV) mini-grid, and by 2017 began generating 1 MW of electricity to more than 3,500 businesses, homes and government offices.
  • RES: Solar PV with battery storage and diesel backup.  BREP uses a prepaid, pay-as-you-go model to collect revenue, with each house being equipped with a digital meter.
  • Implementation: The mini-grid was funded by the New Zealand Ministry of Foreign Affairs and Trade and built by a joint venture of two New Zealand companies, Sustainable Energy Services International (SESI) and NetCon. After construction, project developers transferred the system to Da Afghanistan Breshna Sherkat (DABS), Afghanistan’s national utility that now owns and operates the system. SESI and NetCon helped DABS operate the system for the first year after installation.
  • Population: 100,000
  • Area: 35 km²
  • Link: https://www.usaid.gov/energy/mini-grids/case-studies/afghanistan-hydropower

 

Bamiyan, Afghanistan

Beaverton, Oregon, USA

Beaverton, Oregon, USA

  • Target: Achieve 100% renewable energy target including all public buildings, streetlights, and the water supply. 80 percent carbon emissions reduction below current levels by 2050, with a near-term emphasis on 40 percent reduction by 2030.
  • Status: Achieved - Since 2014, 100% of electricity fed into the city's grid comes from wind power sources. It is the only city in the state of Oregon that procures all of its power, for civic operations, from Portland General Electric’s (PGE) renewable energy program.
  • RES: Windpower and solar.
  • Implementation: In the first instance, Beaverton created an Energy Map for the base year of 2012, and researched existing and proposed state laws. To achieve the energy target, the electricity that Beaverton uses is not sourced from renewable energies produced in the town, but through investments in renewable electricity, which offset the consumed power in the city. Beaverton teamed up with PGE to purchase renewable energy offsets equivalent to all of the electricity demands for the city. The renewable energy purchased powers the city’s street lights, traffic signals and water pumping. PGE acts as a public consultant and encourages the community to switch to 100% renewable energy via different green products and packages which they can can select according to their needs. Competitions and projects enhance the level of participation of community members, such as the Beaverton Better Buildings Challenge (Beaverton BBC) which aims to improve energy efficiency in local buildings 20% by 2020. The city provides participants of the program free energy consultation, assistance prioritizing efficiency projects and support with utility data tracking tools.
  • Population: 89,803
  • Area: 48.51 km²
  • Link: https://www.climatesolutions.org/article/beaverton-oregon-does-carbon-math%20
Beaverton, Oregon, USA

Bonaire, Caribbean Netherlands

Bonaire

  • Target: 100% of renewable energy in the electrical system.
  • Status: In progress
  • RES: Hybrid wind-diesel power plant
  • Implementation: The Caribbean island of Bonaire is located 80km north of the Venezuelan coast. Its energy transition began in 2004 after the island’s sole diesel power plant was destroyed by a fire. Instead of re-building it, the government decided to convert Bonaire’s electricity system to one based on 100% renewable energy sources. The decision was driven by several aspects. Bonaire has close ties to Europe (being a special municipality of The Netherlands) where the share of renewable sources of electricity has been increasingly expanding. Financial support for the transition would come from Dutch Rabobank. The complete destruction of the old electric system presented an opportunity to build something new and innovative. So, while rented diesel generators served as a temporary power supply, the Bonaire government and the local utility closely collaborated in the planning of the energy transition. In 2007, the consortium “EcoPower Bonaire BV” signed the contract with the government-owned Water and Energy Company Bonaire (WEB) to construct a new green energy system, including wind power and biodiesel from algae. In August 2010, the world’s largest hybrid wind-diesel power plant went online. 12 wind turbines with a total wind power capacity of 11MW constituted the first element of Bonaire’s new power generation system. The wind turbines only contributes around 33% to the annual required electricity demand, but at times of peak wind the turbines can cover about 90% of the demand. A 6MWh battery storage for surplus electricity makes the overall system more reliable as it is capable of balancing power fluctuations in times of low wind. When the wind drops the battery provides 3MW for two minutes, which allows enough time to start the 14MW diesel power plant. The diesel generators run with heavy fuel oil, light fuel oil and biodiesel. The next step for Bonaire is the large-scale production of biodiesel from algae, which is currently under development. Besides decreasing the reliance on fuel imports and the impacts of fuel price volatility, the economic benefit of Bonaire’s renewable energy system is expected to return US$15 million annually, from a total investment of $55-60 million, which will be partly compensated by carbon credits.
  • Population: 18,905 (2015)
  • Area: 294 km2 (114 sq mi)
  • Link: https://www.renewableenergyworld.com/articles/2015/01/a-caribbean-island-says-goodbye-diesel-and-hello-100-percent-renewable-electricity.html
Bonaire

Boulder, Colorado, USA

Boulder, Colorado, USA

  • Target: 100% renewable electricity community wide by 2030, interim goal of 40% renewable electricity/50 MW local installations by 2020
  • Status: In progress
  • RES: Solar energy
  • Implementation: Boulder is a small city located in the state of Colorado Rocky Mountains. In December 2016, the City Council voted to commit the City to 80% reduction in community greenhouse gas emissions below 2005 levels by 2050, 100% renewable electricity by 2030, and 80% reduction in organization greenhouse gas emissions below 2008 levels by 2030. At the time of the plan's adoption, 99% of Boulder's energy for electricity, heating, and transportation came from burning fossil fuels. Roughly half of the City's GHG emissions were coming from electricity. Approximately 22% of electricity was being generated by renewables, with approximately 30 MW of local renewable power generation installed. More than half of this was local solar installations.

    By 2030, an all renewable electricity system aims to include 100 MW of local renewables, which will increase to 175 MW by 2050. This increase signals the City's strategy in moving towards 80% electrification. Electric vehicles and heat pumps for example will replace equipment formerly supplied by natural gas, and will demand greater electricity supply.

    To transition to all renewable electricity, Boulder's plan relies on a three part strategy. First is to reduce energy consumption. City-funded pilot projects aim to integrate efficiency with on-site generation and natural gas and petroleum replacement strategies. The City plans to expand demand side management services through the implementation of a municipal utility in lieu of the historic investor owned utility. To lower costs of owning on-site solar, the City plans to establish collective purchase agreements that allow groups to own solar projects. This can help reduce the overall demand for the municipal utility to supply electricity and scale up renewable energy procurement or installation. Second is to replace fossil fuels with renewable energy. The City plan to analyse renewable generation and storage opportunities to replace fossil generation, as well as strategies for replacing natural gas and petroleum-based transportation. Third is to re-design critical community infrastructure and operations through mapping and strengthening resiliency and protection against power failure.
  • Population: 108,090 (2016)
  • Area: 25.85 sq mi (66.95 km2)
  • Link: https://bouldercolorado.gov/energy-future
Boulder, Colorado, USA